
Lecture Notes on Windows Debugging

I. Debugging Tools

II. Debugging 101

III. Primer on PC Architecture

IV. Debugging Processes (User-Mode Debugging)

V. Debugging Drivers (Kernel-Mode Debugging)

Appendices

I. Assembly Cheat Sheet

Table of Contents

(C) 2010 JL@HisOwn.com 2

Jonathan Levin specializes in training and consulting services. This, and many other training materials, are

created and constantly updated to reflect the ever changing environment of the IT industry.

To report errata, provide feedback, or for more details, feel free to email JL@HisOwn.com

I. Assembly Cheat Sheet

II. Debugging Cheat Sheet

Recommended Reading

Printed on 100% recycled paper. I hope you like the course and keep the handout.. Else – Recycle!

© Copyright

版權聲明

This material is protected under copyright laws. Unauthorized reproduction, alteration, use in part or

in whole is prohibited, without express permission from the author.

I put a LOT of effort into my work (and I hope it shows). Respect that.

Normally, we distinguish between three usage scenarios of debuggers:

Johnny's Lecture Notes on Windows Debugging The Debug Sessions

- Launching Processes: When you want to debug a program from its very first
stages, the debugger accepts the program name as an argument, and starts the
program as its own subprocess. When doing so, the debugger immediately has full
control of the program, and all operations on it are allowed. The Debugger starts the
process by using the Win32 API call CreateProcess():

And specifying as an argument to “dwCreationFlags” either DEBUG_PROCESS
(0x1) to debug the process and any children, or DEBUG_ONLY_THIS_PROCESS
(0x2) to debug the process but no follow forks..

15

BOOL WINAPI CreateProcess(__in_opt LPCTSTR lpApplicationName,
__inout_opt LPTSTR lpCommandLine,

__in_opt LPSECURITY_ATTRIBUTES lpProcAttr,
__in_opt LPSECURITY_ATTRIBUTES lpThrAttr,

__in BOOL bInheritHandles,
__in DWORD dwCreationFlags,

__in_opt LPVOID lpEnvironment,
__in_opt LPCTSTR lpCurrentDirectory,
__in LPSTARTUPINFO lpStartupInfo,

__out LPPROCESS_INFORMATION lpProcInfo);

(C) 2010 JL@HisOwn.com

- Attaching to Processes: When the debugged process is already running, the debugger
has to attach to it. Attaching involves a call to the Win32 DebugActiveProcess() and
setting the debugger to receive notifications or debugging events from the process.
Detaching involves a call to DebugActiveProcessStop() and optionally
DebugSetProcessKillOnExit().

The debugger can attach to a process by one of two ways:

- Specifying the PID or process name on the command line

- Using the built-in “.attach” command with the PID.

- Crash Dump Debugging: One of the Debugger’s most useful features is debugging
from a crash dump. A dump is much like a UNIX core file, often with a .dmp extension.
Dumps are created when the application crashes via “dumprep.exe” (which also suggests
sending the dump to Microsoft), or when the system crashes on a blue screen of death, if
the option is selected. In Windows XP, this is set under “Advanced” in the computer
properties:

Johnny's Lecture Notes on Windows Debugging The Debug Sessions

The “-z” switch is used to open the dump, and inspect. Useful in this context is the
debugger extension of “!analyze” which automatically diagnoses the dump and produces a
detailed report of what happened, and who the culprit was.

16(C) 2010 JL@HisOwn.com

Writing a basic debugger in Windows isn’t as hard as it might seem. Windows has
built-in debugging support, and a debugger need only open or create a target

Johnny's Lecture Notes on Windows Debugging The Debug Sessions

built-in debugging support, and a debugger need only open or create a target
process, and enter an infinite loop to wait for its debug events.

The Debug events are defined in the above table, and they are effectively an enum,
so the main loop can switch() on them:

(C) 2010 JL@HisOwn.com 18

Events Event Code Occurs when

CREATE_PROCESS_DEBUG_EVENT
CREATE_THREAD_DEBUG_EVENT

Ibp cpr
ct

Main process and/or subprocess created
CreateThread()

EXCEPTION_DEBUG_EVENT Breakpoint (INT 3), or general exception

EXIT_PROCESS_DEBUG_EVENT
EXIT_THREAD_DEBUG_EVENT

epr
et

Last thread of a process exits
A thread of a process exits

LOAD_DLL_DEBUG_EVENT
UNLOAD_DLL_DEBUG_EVENT

ld
ud

LoadLibrary() is called
FreeLibrary() is called

OUTPUT_DEBUG_STRING_EVENT out OutputDebugString() is called

Breakpoints are undoubtedly one of the most powerful features of a debugger – the
ability to pause program execution indefinitely, and use it to inspect the program’s

Johnny's Lecture Notes on Windows Debugging The Debug Sessions

ability to pause program execution indefinitely, and use it to inspect the program’s
state, registers and memory, as well as potentially modify it. Even more useful is the
ability to automatically run a debugger command on a breakpoint.

The “b” command can be used from inside the debugger to set and/or manage
breakpoints. A breakpoint can be set at a specific address, and is set by replacing the
opcode in that address by “INT 3” (0xCC). If a debugger is attached, this opcode
triggers a DebugEvent, (if it isn’t, an unhandled exception occurs). Any debugger
waiting on the event can intercept it (as an EXCEPTION_DEBUG_EVENT), and
handle it.

A common technique is to embed a selective breakpoint in a program. This can be
done by emitting an “int 3” directly in the code (in an __asm block):

or by calling the DebugBreak() API (which essentially does the same thing). Usually,
this is coupled with a call to the Kernel32 export IsDebuggerPresent():

DebugBreak() calls ntdll!DbgBreakPoint, which you can also call directly.

23(C) 2010 JL@HisOwn.com

if (IsDebuggerPresent())
{

DebugBreak();
}

__asm { int 3 }

Some examples:

Break only once:

- bp addr /1

Break only on 5th or later time:

- bp addr 5

Break on write to var, a DWORD (4-byte) value:

- ba w4 var

Breakpoints can be set as “conditional”: not really conditional per se, but rather
breakpoints that do break, then evaluate an expression and – if false, simply resume
automatically by executing “g”.

For example:

- bu func "j (dwo(@esp+8) == 1)
'.echo Second argument is 1 - breaking; kn' ; 'g' “

Johnny's Lecture Notes on Windows Debugging The Debug Sessions

Will break only if the second argument to “func” is “1”.

Other examples:

Break on a call to CreateFileW. Dump as unicode the first argument:

- bu kernel32!CreateFileW “.echo Got file; du dwo(@esp+4) ; gc“

This will print the filename (= last on the stack, @ESP+4) to CreateFileW.

Similarly, break on a call to LoadLibraryW. Dump as unicode the first argument:

- bu kernel32!LoadLibraryW ".echo Loaded:; du dwo(@esp+4); g"

This will print the filename (= last on the stack, @ESP+4) to LoadLibraryW.

(C) 2010 JL@HisOwn.com 24

The translation of Virtual Addresses into physical ones is a three staged process.
Given a 32-bit address, The CPU segments the address into three separate parts:

Johnny's Lecture Notes on Windows Debugging PC Architecture

Given a 32-bit address, The CPU segments the address into three separate parts:

The first 10 bits – point to one of 210 entries in a global Page Directory Table.
This table is, in effect, a table of page tables, and the 10 bits select a specific page
table index by a Page Directory Entry or PDE. This table is defined per process, and
maintained in a Page Descriptor Base Register, which on the Intel architectures is
Control Register #3 (CR3). This register is reloaded on each process context switch
from the KPROCESS object, since each process has a different virtual memory
image.

The next 10 bits – point to a specific page (a.k.a Page Table Entry - PTE) in the
Page Table that was selected by the previous 10 bits. 10 bits again mean 210 – so
each page table maintains the addresses of 4 MB (=210 * 4KB) of memory.

The last 12 bits – are the specific offset in the page itself. Since the page itself is
4KB (=4096 bytes) this works out perfectly with 4096 being 212. However, most
addresses are aligned on a DWORD boundary, which allows the system to reserve
the last two bits for its own internal use.

Each page table maintains 4MB, and there are 210 tables in the Page Descriptor
Table – so 210 * 4MB = 4GB, which is the size of the virtual address space of the
process. Things look somewhat different when Physical Address Extensions* (PAE)
are employed, but are sufficiently similar – as is shown next.

42(C) 2010 JL@HisOwn.com

When calling functions, one of several “calling conventions” can be used. The
common ones are listed here.

Johnny's Lecture Notes on Windows Debugging Debugging Processes

common ones are listed here.

The default calling convention, __cdecl, is the “classic” method of calling functions in
C and C++: The caller pushes the arguments in reverse order, right-to-left, on to the
stack, and is also responsible for clearing the stack space upon function return –
usually by adding the stack space value to ESP using an assembly “add” instruction.

A _cdecl call, e.g.

char *c = (char *) c malloc(240);
memset ((void *), ‘x’, 240) would look like this:

Would emit opcodes like this:

64

00401052 68f0000000 push 0F0h // 0xF0 = 240
0040105f e85e000000 call Test!malloc (004010c2)
// Malloc returns: Stack NOT cleared (optimization).malloc’ed ptr in EAX
00401064 68f0000000 push 0F0h // 0xF0 = 240
00401069 8bf0 mov esi,eax // ESI = addr of ptr
0040106b 6a78 push 78h // 0x78 = ‘x’
0040106d 56 push esi // addr of ptr
0040106e e869080000 call Test!memset (004018dc)
00401073 83c410 add esp,10h // NOW we clear stack

(C) 2010 JL@HisOwn.com

The code is pretty simple: Arguments are pushed on the stack in reverse order. Note,
though, that even this simple code has an optimization. The return from malloc
doesn’t clean up the stack – rather, the operation is deferred until we return from the
memset, where we clear 0x10 bytes: 0x0C of the call to memset (3 DWORD
arguments), and 0x04 of the call to malloc(1 DWORD argument).

The _cdecl’ed function’s prolog normally begins:

And ends:

The __stdcall calling convention is a variant of the PASCAL calling convention
(__pascal). It is a common convention for all the Win32 API functions – the compiler
#define of “WINAPI” in fact resolves to it. In this calling convention, the callee is
responsible for clearing up the stack space, and – as a result – variable argument
functions are not allowed. The code generated, however, is smaller (though often

00401000 55 push ebp // Save current frame pointer
00401001 8bec mov ebp,esp // Set new frame pointer

0040102d 8be5 mov esp,ebp // Restore stack pointer
0040102f 5d pop ebp // from base of frame
00401030 c3 ret // Pop RA off stack and jump

Johnny's Lecture Notes on Windows Debugging Debugging Processes

functions are not allowed. The code generated, however, is smaller (though often
marginally) since the cleanup code is inside the function, meaning only one instance
thereof regardless of number of function invocations. The callee (called function)
clears up its own stack space, usually by specifying the space as an argument to the
assembly “ret” instruction. The prolog is thus largely the same:

While the epilog specifies a value to pop the stack by:

65

:000> u Kernel32!CreateFileA
kernel32!CreateFileA:
7c801a24 8bff mov edi,edi // ??? – Stay Tuned ☺
7c801a26 55 push ebp
7c801a27 8bec mov ebp,esp

:000> u Kernel32!CreateFileA + 0x26
kernel32!CreateFileA+0x26:
7c801a4a e827ef0000 call kernel32!CreateFileW (7c810976)
7c801a4f 5d pop ebp
7c801a50 c21c00 ret 1Ch // Pop RA, AND inc ESP by 0x1C bytes

(C) 2010 JL@HisOwn.com

Though __cdecl is the default calling convention in C++ programs as well as in C, it
behaves a bit differently for member functions of objects. In those cases, if the
function is of fixed arguments the “this” parameter (address of the calling object) is
passed in ECX. If the member function supports variable arguments, the call
becomes a standard __cdecl, with the “this” argument passed on the stack as the
very last argument (so that it is popped first).

__fastcall allows for a simple optimization on __stdcall, by passing the first two
arguments in the otherwise unused registers of ECX and EDX. This is faster because
for functions of one or two arguments, there is no need to lay anything on the stack.

To avoid confusion and to make it easier during both linking and debugging, the
function names are “decorated” by the compiler. This “decoration” is effectively a form
of name-mangling, in which an underscore (_) or at sign (@) is prepended to the
function, to distinguish its type, and for __stdcall and __fastcall, which allow only fixed
arguments, the expected size of the stack is specified after the function name.

The default convention in a project may be changed by overriding the switch directly
(in the “Command Line” setting, or as a direct argument in the Makefile, or – from the
project properties, in “Advanced”:

Johnny's Lecture Notes on Windows Debugging Debugging Processes

66(C) 2010 JL@HisOwn.com

Networking Protocols – OSI Layers 2-4:
Focusing on - Ethernet, Wi-Fi, IPv4, IPv6, TCP, UDP and SCTP

Application Protocols – OSI Layers 5-7:
Including - DNS, FTP, SMTP, IMAP/POP3, HTTP and SSL

VoIP:
In depth discussion of H.323, SCCP, SIP and RTP/RTCP, down to the packet level.

Windows Networking Internals:

NetBIOS/SMB, CIFS, DCE/RPC, Kerberos, NTLM, and networking architecture

Linux Survival and Basic Skills:

Graceful introduction into the wonderful world of Linux for the non-command line oriented user. Basic skills
and commands, work in shells, redirection, pipes, filters and scripting

Linux Administration:

Follow up to the Basic course, focusing on advanced subjects such as user administration, software
management, network service control, performance monitoring and tuning.

Linux User Mode Programming:

Programming POSIX and UNIX APIs in Linux, including processes, threads, IPC mechanisms and networking.
Linux User experience required.

Linux Kernel Programming:

…If you liked this course, consider…

Linux:

Networking:

(C) 2010 JL@HisOwn.com 96

Linux Kernel Programming:

Guided tour of the Linux Kernel, 2.4 and 2.6, focusing on design, architecture, writing device drivers
(character, block), performance and network devices. The counterpart of this course, for Linux.

Embedded Linux Kernel Programming:

Similar to the Linux Kernel programming course, but with a strong emphasis on development on non-intel
and/or tightly constrained embedded platforms

Windows Programming:

Windows Application Development, focusing on Processes, Threads, DLLs, Memory Management, and
Winsock

Windows Kernel Programming

Windows Kernel Architecture and Device Driver development – focusing on Network Device Drivers (in
particular, NDIS) and the Windows Driver Model. Updated to include NDIS 6 and Winsock Kernel

Cryptography:

From Basics to implementations in 5 days: foundations, Symmetric Algorithms, Asymmetric
Algorithms, Hashes, and protocols. Design, Logic and implementation

Application Security

Writing secure code – Dealing with Buffer Overflows, Code, SQL and command
Injection, and other bugs… before they become vulnerabilities that hackers can exploit.

Windows:

Security:

